Design Examples MEAD March 2008

Richard Schreier

Richard.Schreier@analog. com

ANALOG DEVICES

Catalog

$1 \quad 2^{\text {nd }}$-Order Lowpass

- Architecture: Single-bit, switched-capacitor
- Application: General-purpose, low-frequency ADC
$25^{\text {th }}$-Order Lowpass
- Architecture: Multi-bit switched-capacitor
- Application: Audio

3 2-0 Cascade

- Architecture: (Multibit MOD2, pipeline) Cascade
- Application: Wideband communications
$4 \quad 6^{\text {th }}$-Order Bandpass
- Architecture: Single-loop with LC, Active-RC and switchedcapacitor resonators
- Application: High-dynamic-range radio receiver

1. MOD2
 Specifications

Parameter	Symbol	Value	Units
Bandwidth	$\boldsymbol{f}_{\boldsymbol{B}}$	$\sim \mathbf{1}$	$\mathbf{k H z}$
Sampling Frequency	$\boldsymbol{f}_{\boldsymbol{s}}$	$\mathbf{1}$	$\mathbf{M H z}$
Signal-to-Noise Ratio	SNR	$\mathbf{1 0 0}$	dB
Supply Voltage	VDD	$\mathbf{3}$	V

Assumptions

- Single-bit switched-capacitor realization
- Input voltage range is 0-VDD (single-ended) Reference voltage is VDD
Op-amp swing is $\mathbf{2} \mathbf{V}_{\mathbf{p p}}$ (differential)

Toolbox Design

OSR = 500;
H = synthesizeNTF (2,OSR,0,2);
[snr amp] = simulateSNR (H,OSR) ;
plot (amp,snr, 'bd', amp,snr, 'b-');

- Very high SQNR \Rightarrow Quantization noise will be negligible.
- Maximum input signal $\approx-1 \mathbf{d B F S}$ \Rightarrow Let's not worry about instability.

Block Diagram \& DR Scaling


```
form = 'CIFB';
```

[a, g,b,c] = realizeNTF (H, form);
$\mathrm{b}(2$: end) $=0$;
$\mathrm{ABCD}=\operatorname{stuff} \mathrm{ABCD}(\mathrm{a}, \mathrm{g}, \mathrm{b}, \mathrm{c}, \mathrm{form})$;
[ABCDs umax] = scaleABCD (ABCD);
[a,g,b,c] = mapABCD (ABCDs,form);

- Code yields $a=[0.27,0.24], b=[0.27], c=[0.345 .1]$, $u_{\text {max }}=0.9$

Quantize to $a_{1}=b_{1}=a_{2}=1 / 4, c_{1}=1 / 3$ for convenience.

Simulated Spectrum

- Coefficient change has negligible performance impact

Peak SQNR = $\mathbf{1 1 5} \mathbf{d B},\|H\|_{\infty}=\mathbf{2 . 2}$.

Simplified Schematic

Difference Equations

$$
\begin{aligned}
x_{1}(n+1) & =x_{1}(n)+b_{1} u(n)-a_{1} v(n) \\
x_{2}(n+1) & =x_{2}(n)+c_{1} x_{1}(n)-a_{2} v(n) \\
v(n) & =Q\left(x_{2}(n)\right)
\end{aligned}
$$

Timing

- Verify that the circuit follows the difference equations. Check the quantizer and feedback timing carefully!

First Integrator

- Want input (full-scale) range $=[0,3] \mathrm{V}$ and want op-amp swing $=[-1,+1] \mathbf{V}_{\text {differential }}$

$$
x_{1}=V_{x 1} / 1 \mathrm{~V}, u=\left(V_{\text {in }}-1.5 \mathrm{~V}\right) / 1.5 \mathrm{~V}
$$

$$
\Rightarrow C_{1} / C_{2}=b_{1} / 3=1 /
$$12

Absolute Capacitor Values

- Absolute capacitor values are determined by thermal noise considerations

Capacitor ratios are set by the desired dynamics.

- For example, assume noise is purely $k T / C$ noise
i.e. device noise is negligible.
- Since thermal noise is white, we get a factor of OSR reduction in the in-band noise
i.e. $v_{n}^{2}=\frac{1}{O S R} \cdot \frac{k T}{C_{1}}$
- $v_{n}=\mathbf{1 0} \mu \mathrm{V}_{\mathrm{rms}} \Rightarrow C_{\mathbf{1}}=\mathbf{8 3} \mathrm{fF} \Rightarrow C_{\mathbf{2}}=\mathbf{1} \mathrm{pF}$

These capacitor values are quite reasonable!
C_{2} gets smaller if the output swing of the op-amp is increased.

Second Integrator

- In-band noise of second integrator is greatly attenuated By a factor of $\frac{(O S R)^{3}}{12^{2}} \approx 10^{6}$ (approximately).
\Rightarrow Capacitor sizes dictated by charge injection errors and desired ratio accuracy

Building Block- Op Amp

- Folded-cascode op-amp with switched-capacitor common-mode feedback

Op-Amp Specifications

- 50% of $T / 2=0.25 \mu \mathrm{~s} ; Q_{\text {max }}=C_{1} V D D=0.25 \mathrm{pC}$ $\Rightarrow I_{\text {slew }}=1 \mu \mathrm{~A}$ is sufficient
- $T / 2=10 \tau ; \tau=C_{1} / g_{m} ; C_{1}=0.1 \mathrm{pF} \Rightarrow g_{\mathrm{m}}=2 \mu \mathrm{~A} / \mathrm{V}$

Power consumption can be very low!

- As a rule of thumb, $A_{\min } \approx O S R$ for negligible $S Q N R$ reduction

Assumes that the op amps are linear and that the integrator gain factors are close to 1 .
SQNR margin can be traded for reduced op-amp gain requirements.

- In this implementation, the integrator gain factors are $1 / 3$ and $1 / 12$, and the gain requirements are relaxed

For example, $\mathrm{A}=\mathbf{4 0} \mathbf{~ d B}$ is sufficient for 110 dB SQNR and the width of the deadband around 0 V is only $4 \mu \mathrm{~V}$ if $\mathrm{A}=40 \mathrm{~dB}$.

Building Block- Latched Comparator

- Falling phase 2 initiates regenerative action
S and R connected to a Set/Reset latch

Building Block- Clock Generator

* = Delay Control

2. MOD5
 Specifications

Parameter	Symbol	Value	Units
Signal Bandwidth	$\boldsymbol{f}_{\boldsymbol{B}}$	$\mathbf{5 0}$	$\mathbf{k H z}$
Sampling Frequency	$\boldsymbol{f}_{\boldsymbol{s}}$	$\mathbf{8}$	$\mathbf{M H z}$
Signal-to-Noise Ratio	SNR	$\mathbf{1 1 0}$	dB
Supply Voltage	VDD	$\mathbf{3}$	\mathbf{V}

Assumptions

- Single-bit switched-capacitor realization
- Input voltage range is $\pm \mathbf{2} \mathbf{V}$ (differential)
- Reference voltage is 2 V (differential) and Op amp swing is $\mathbf{4} \mathbf{V}_{\mathbf{p p}}$ (differential)

Toolbox Design

OSR $=8 \mathrm{e} 6 /(2 * 50 \mathrm{e} 3)$;
$\%$ OSR $=80$
H = synthesizeNTF (5, OSR, 1, 1.5);
amp $=$ [-140:5:-15 -12 -10:0]; snr = simulateSNR (H,OSR,amp); plot (amp,snr, 'bd', amp,snr, 'b-');

- Very high peak SQNR \Rightarrow Quantization noise will be negligible.
- Maximum input signal $\approx-4 \mathrm{dBFS}$
\Rightarrow Scale such that input range is $\mathbf{5 0 \%}$ of full-scale.

First Integrator

- Input-referred differential noise power is $P_{n}=8 \frac{k T}{C_{1}}$
Peak signal power is $P_{s}=(2 \mathrm{~V})^{2 / 2}=2 \mathrm{~V}^{2}$
- 110 dB SNR requires $C_{1}=\frac{8 k T \bullet S N R}{O S R \bullet P_{s}}=21 \mathrm{pF}$ This is a big capacitor!

Dynamic Range Scaling \& Topology Selection
 form = 'CRFB'; \% or 'CRFF'
 [a,g,b,c] = realizeNTF (H,form);
 $b(2$:end) $=0 ; \quad$ \% for CRFB only
 $\operatorname{ABCD}=$ stuffABCD ($a, g, b, c, f o r m)$;
 [ABCDs umax] = scaleABCD (ABCD);
 $[a, g, b, c]=\operatorname{mapABCD}$ (ABCDs,form);

- form $={ }^{\text {'CRFB' }}$ yields $b_{1}=0.1$, i.e. $C_{2}=10 C_{1}$!

The integrating capacitor is VERY large!

- form $=$ 'CRFF' yields $b_{1}=0.39$, i.e. $C_{2}=2.5 C_{1}$

The integrating capacitor is still large, but is more reasonable.

Simulated Spectrum

- $\mathbf{1 0}$ dBFS input

- Used k derived from simulation to calculate "true" NTF Need to set $\boldsymbol{b}_{\mathbf{6}}=\mathbf{1} / \mathrm{k}$ to maintain unity STF.

Block Diagram

- Summation is usually performed by a single passive switched-capacitor network

Timing Check

Desired Difference Equations
$x_{1}(n+1)=x_{1}(n)+b_{1} u(n)-c_{1} v(n)$
$x_{2}(n+1)=c_{2} x_{1}(n)+x_{2}(n)-g_{1} x_{3}(n)$
$x_{3}(n+1)=c_{3} x_{2}(n+1)+x_{3}(n)$
$x_{4}(n+1)=c_{4} x_{3}(n)+x_{4}(n)-g_{2} x_{5}(n)$
$x_{5}(n+1)=c_{5} x_{4}(n+1)+x_{5}(n)$
$y(n)=a_{1} x_{1}(n)+a_{2} x_{2}(n+1)+a_{3} x_{3}(n)$
$+a_{4} x_{4}(n+1)+a_{5} x_{5}(n)+b_{6} u(n)$
$y_{a}(n)=\left(a_{1}+a_{2} c_{2}\right) x_{1}(n)+a_{2} x_{2}(n)+\left(a_{3}-a_{2} g_{1}+a_{4} c_{4}\right) x_{3}(n)$
$+a_{4} x_{4}(n)+\left(a_{5}-a_{4} g_{2}\right) x_{5}(n)+b_{6} u(n-1)$
$v(n)=Q[y(n)]$
$\left[y_{a}=y+b_{6}(u(n-1)-u(n)) \Rightarrow S T F_{a}(z)=\operatorname{STF}(z)-\left(1-z^{-1}\right) N T F(z)\right]$

Behavioral Schematic

Impulse Response Verification

Potential Improvements

- Clock faster

Reduces modulator order.
Reduces the size of all capacitors whose values are dictated by noise.

- Use multi-bit quantization

Reduces modulator order.
Increases $\boldsymbol{b}_{\mathbf{1}}$ (after performing voltage scaling), thereby reducing total capacitor area.

3. 2-0 Cascade

Specifications

Parameter	Symbol	Value	Units
Bandwidth	$\boldsymbol{f}_{\boldsymbol{B}}$	1.25	$\mathbf{M H z}$
Sampling Frequency	$\boldsymbol{f}_{\boldsymbol{s}}$	20	$\mathbf{M H z}$
Signal-to-Noise Ratio	SNR	90	dB
Supply Voltage	VDD	5	V

Simplified Block Diagram

Toolbox Evaluation

```
BW = 1.25e6; Fs = 20e6; OSR = Fs/(2*BW);
M = 32; nlev = M+1;
nb = 7; kpipe = 2^nb;
Ha = zpk([1 1],[0 0],1,1);
amp = [-120:5:-15 -12:2:-6 -5:0];
sqnr = zeros(2,length(amp));
N = 8192;
ftest = round(0.16/OSR*N);
u1 = M*sin(2*pi*ftest/N*[0:N-1]);
for i = 1:length(amp)
    [v1 junk1 junk2 y1] = simulateDSM(undbv(amp(i))*u1,Ha,nlev);
    v2 = ds_quantize(kpipe*(v1-y1),kpipe+1);
    v = v1 - filter([1 -2 1],1, v2/kpipe);
    spec1 = fft(v1.*hann(N))/(M*N/4);
    sqnr(1,i) = calculateSNR(spec1 (1:ceil(N/2/OSR)),ftest);
    spec = fft(v.*ds_hann(N))/(M*N/4);
    sqnr(2,i) = calculateSNR(spec(1:ceil(N/2/OSR)),ftest);
end
plot(amp,sqnr(1,:),'m^','MarkerSize',10,'LineWidth',2);
hold on;
plot (amp,sqnr(1,:),'m--','LineWidth',3);
plot (amp, sqnr(2,:),'bs','MarkerSize',10,'LineWidth',2);
plot (amp,sqnr(2,:),'b-','LineWidth',3);
figureMagic([-120 0],10,2, [0 120],10,2);
```

Ideal SQNR Curve

- Simulated peak SQNR = 105 dB

Again, there is a lot of margin, so quantization noise should be small.

Gain Mismatch (Capacitor Ratio Error)

- Need gain error < $\sim \mathbf{0 . 5 \%}$

Not a problem if moderately large capacitors are used.

NTF Zero Error (Due to Finite Op-Amp Gain)

- Need op-amp gain > 65 dB

Again, not an unreasonable requirement.

Block Diagram [Brooks 1997]

- Has 1 bit of overlap at each stage

An Integrator Stage

4. Bandpass Modulator

- Want high dynamic range (~90 dB) with low power consumption ($\sim 50 \mathrm{~mW}$)
- Desire a continuous-time architecture for its inherent anti-aliasing properties
- $\Delta \Sigma$ Toolbox indicates we should use a $6^{\text {th }}$-order, 8 -level modulator

Use a FB topology to get a clean STF.

Simplified Architecture

Features of the Architecture

- The mixer output current is processed by passive components which yield gain without adding noise or distortion, and without consuming power

More front-end gain makes back-end noise less important.

- The first feedback DAC cancels the bulk of the in-band portion of the mixer output, effectively passing only a residue to the ADC backend

Large signal-handling capability is not compromised.
Only the LNA, Mixer and ADC front end have to deal with the full dynamic range of the signal.

Choices for the Second Resonator

- A second LC tank would require the least power, but would also need more pins
- Active-RC:2 mA for $50 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ i.r. noise Switched-C:Estimate $>\mathbf{1 0} \mathbf{~ m A}$ for same i.r.n. g_{m}-C:Tough to get linearity and stability \therefore Use Active-RC
- Tuning implemented with 8-bit capacitor arrays

2:1 tuning range, regardless of process.

Choices for the Third Resonator

- Active-RC: Q and drift are uncertain; might need a fourth resonator
Switched-C: Q is high (>100) and drift is low
\therefore Use Switched-C
- Consumes 1 mA and has an i.r.n of $300 \mathrm{nV} / \sqrt{\mathrm{Hz}}$.

$\frac{f_{0}}{f_{s}}=\operatorname{acos}\left(1-\frac{1}{2}\left(\frac{7 \cdot 3}{9 \cdot 4}\right)\right)=0.1247$
- Center frequency is set by capacitor ratios
"LDI" structure guarantees pole on unit circle ($A=\infty$).

AGC

- For a - $\mathbf{1 8} \mathbf{~ d B m}$ input, the mixer output is $\mathbf{2} \mathbf{~ m A} A_{p p}$, so DAC1 needs to sink 2 mA
- Power consumption can be reduced at low signal levels (the usual case) by reducing DAC1's full-scale

Reduces the FS of the ADC and thus gives the ADC more "gain."

- Lowering DAC1's full-scale also reduces the output current noise of the DAC

Includes mismatch-induced and dynamic errors as well as thermal noise.

- Placing a variable-gain element after the LC tank compensates for the reduced signal level and also saves current by minimizing the i.r.n. of the ADC's backend

Full ADC

- Achieves NF $=\mathbf{8} \mathbf{d B}$ and IIP3 $=\mathbf{0} \mathbf{d B m}$ with $P=50 \mathbf{~ m W}$

Noise vs. AGC
150 kHz BW

Spectrum of Undecimated Output

$f_{\text {CLK }}=18 \mathrm{MHz}$

Spectrum of Decimated Output BW $=270.833 \mathrm{kHz}$

Spectrum of Decimated Output

BW = 15 kHz , 24-bit data

Measured SNR

$f_{\text {IF }}=273 \mathrm{MHz}, f_{\text {LO }}=269 \mathrm{MHz}, f_{\text {CLK }}=32 \mathrm{MHz}$

Summary

Design	OSR	DR (dB)	Lessons
MOD2	500	100	High OSR is helpful. $\Delta \Sigma$ can yield a very robust design.
MOD5	80	110	FF topology has lower cap. area than FB.
2-0 Cascade	8	90	Multi-bit quantization is needed to get high SNR at low OSR. Must be watchful of gain mismatch and NTF zero error in a cascaded system.
CT BP (LC)	48	85	An LC tank enables a power-eficient bandpass Mixer+ADC. The e loop filter can use both continuous- time and discrete-time resonators.

- Many design choices: $\Delta \Sigma / \Sigma \Delta$, single-loop/multi-loop, single-bit/multi-bit, lowpass/bandpass, discrete-time/ continuous-time, real/quadrature...

